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Motivated by the possible mechanism for the pinning of the electronic liquid crystal direction in
YBa2Cu3O6.45 as proposed by Pardini et al. �Phys. Rev. B 78, 024439 �2008��, we use the first-principles
Monte Carlo method to study the spin-1

2 Heisenberg model with antiferromagnetic couplings J1 and J2 on the
square lattice. In particular, the low-energy constants spin stiffness �s, staggered magnetization Ms, and spin
wave velocity c are determined by fitting the Monte Carlo data to the predictions of magnon chiral perturbation
theory. Further, the spin stiffnesses �s1 and �s2 as a function of the ratio J2 /J1 of the couplings are investigated
in detail. Although we find a good agreement between our results with those obtained by the series expansion
method in the weakly anisotropic regime, for strong anisotropy we observe discrepancies.

DOI: 10.1103/PhysRevB.80.033104 PACS number�s�: 12.39.Fe, 75.10.Jm, 75.40.Mg, 75.50.Ee

I. INTRODUCTION

Understanding the mechanism responsible for high-
temperature superconductivity in cuprate materials remains
one of the most active research fields in condensed-matter
physics. Unfortunately, the theoretical understanding of the
high-Tc materials using analytic methods as well as first-
principles Monte Carlo simulations is hindered by the strong
electron correlations in these materials. Despite this diffi-
culty, much effort has been devoted to investigating the prop-
erties of the relevant t-J-type models for the high-Tc
cuprates.1–4 Although a conclusive agreement regarding the
mechanism responsible for the high-Tc phenomena has not
been reached yet, it is known that the high-Tc cuprate super-
conductors are obtained by doping the antiferromagnetic in-
sulators with charge carriers. This has triggered vigorous
studies of undoped and lightly doped antiferromagnets. To-
day, the undoped antiferromagnets on the square lattice such
as La2CuO4 are among the quantitatively best understood
condensed-matter systems.

Spatially anisotropic Heisenberg models have been stud-
ied intensely due to their phenomenological importance as
well as from the perspective of theoretical interest.5–8 For
example, numerical evidence indicates that the anisotropic
Heisenberg model with staggered arrangement of the antifer-
romagnetic couplings may belong to a new universality
class, in contradiction to the O�3� universality predictions.9

Further, it is argued that the Heisenberg model with spatially
anisotropic couplings J1 and J2, as depicted in Fig. 1, is
relevant to the newly discovered pinning effects of the elec-
tronic liquid crystal in the underdoped cuprate super-
conductor YBa2Cu3O6.45.

10,11 It is observed that the
YBa2Cu3O6.45 compound has a tiny in-plane lattice aniso-
tropy which is strong enough to pin the orientation of the
electronic liquid crystal in a particular direction. The authors
of Ref. 12 demonstrated that the in-plane anisotropy of the
spin stiffness of the Heisenberg model with spatially aniso-
tropic couplings J1 and J2 can provide a possible mechanism

for the pinning of the electronic liquid crystal direction in
YBa2Cu3O6.45.

Since the anisotropy of the spin stiffness in the spin-1
2

Heisenberg model with different antiferromagnetic couplings
J1 and J2 has not been studied in detail before with first-
principles Monte Carlo methods, in this Brief Report we per-
form a Monte Carlo calculation to determine the low-energy
constants, namely, the spin stiffnesses �s1 and �s2, staggered
magnetization Ms, and spin wave velocity c. In particular,
we investigate the J2 /J1 dependence of �s1 and �s2, and find
good agreement with earlier studies12 using series expansion
methods in the weakly anisotropic regime. Our finding
would lead to very strong pinning energy per Cu site in
YBa2Cu3O6.45 as claimed in Ref. 12. However, deviations
appear as one moves toward strong anisotropy. We argue that
the deviations observed between our results and the naive
expectation might indicate an unexpected behavior of the
spin stiffness �s at extremely strong anisotropy.

II. MICROSCOPIC MODELS AND CORRESPONDING
OBSERVABLES

The Heisenberg model we consider in this study is defined
by the Hamilton operator

J

J

2

1

FIG. 1. The anisotropic Heisenberg model investigated in this
study. J1 and J2 are the antiferromagnetic couplings in the 1- and
2-directions, respectively.
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H = �
x

�J1S�x · S�x+1̂ + J2S�x · S�x+2̂� , �1�

where 1̂ and 2̂ refer to the two spatial unit vectors. Further, J1
and J2 in Eq. �1� are the antiferromagnetic couplings in the
1- and 2-directions, respectively. A physical quantity of
central interest is the staggered susceptibility �corresponding
to the third component of the staggered magnetization Ms

3�
that is given by

�s =
1

L1L2
�

0

�

dt
1

Z
Tr�Ms

3�0�Ms
3�t�exp�− �H�� . �2�

Here � is the inverse temperature, L1 and L2 are the spatial
box sizes in the one and two directions, respectively, and
Z=Tr exp�−�H� is the partition function. The staggered
magnetization order parameter M� s is defined as M� s

=�x�−1�x1+x2S�x. Another relevant quantity is the uniform
susceptibility that is given by

�u =
1

L1L2
�

0

�

dt
1

Z
Tr�M3�0�M3�t�exp�− �H�� . �3�

Here M� =�xS�x is the uniform magnetization. Both �s and �u
can be measured very efficiently with the loop-cluster algo-
rithm using improved estimators.13 In particular, in the mul-
ticluster version of the algorithm the staggered susceptibility
is given in terms of the cluster sizes �C� �which have the
dimension of time�, i.e., �s= 1

�L1L2
��C�C�2	. Similarly, the uni-

form susceptibility �u= �
L1L2

�Wt
2	= �

L1L2
��CWt�C�2	 is given in

terms of the temporal winding number Wt=�CWt�C�, which
is the sum of winding numbers Wt�C� of the loop clusters C
around the Euclidean time direction. Similarly, the spatial
winding numbers are defined by Wi=�CWi�C� with i
� 
1,2�.

III. LOW-ENERGY EFFECTIVE THEORY FOR
MAGNONS

Due to the spontaneous breaking of the SU�2�s spin sym-
metry down to its U�1�s subgroup, the low-energy physics of
antiferromagnets is governed by two massless Goldstone
bosons, the antiferromagnetic spin waves or magnons. The
description of the low-energy magnon physics by an effec-
tive theory was pioneered by Chakravarty et al.14 A system-
atic low-energy effective field theory for magnons was fur-
ther developed in Refs. 15–17. The staggered magnetization
of an antiferromagnet is described by a unit-vector field
e��x� in the coset space SU�2�s /U�1�s=S2, i.e., e��x�
= �e1�x� ,e2�x� ,e3�x�� with e��x�2=1. Here x= �x1 ,x2 , t� de-
notes a point in �2+1�-dimensional space-time. To leading
order, the Euclidean magnon low-energy effective action
takes the form

S�e�� = �
0

L1

dx1�
0

L2

dx2�
0

�

dt

���s1

2
�1e� · �1e� +

�s2

2
�2e� · �2e� +

�s

2c2�te� · �te� , �4�

where the index i� 
1,2� labels the two spatial directions

and t refers to the Euclidean time direction. The parameters
�s=��s1�s2, �s1, and �s2 are the spin stiffness in the temporal
and spatial directions, respectively, and c is the spin wave
velocity. Rescaling x1�= ��s2 /�s1�1/4x1 and x2�= ��s1 /�s2�1/4x2,
Eq. �4� can be rewritten as

S�e�� = �
0

L1�
dx1��

0

L2�
dx2��

0

�

dt
�s

2
��i�e� · �i�e� +

1

c2�te� · �te� .

�5�

Additionally requiring L1�=L2�=L we obey the condition of
square area. Notice that the effective field theories described
by Eqs. �4� and �5� are valid as long as the conditions
Li��s1�1 and Li��s2�1 for i� 
1,2� hold, which is indeed
the case for the setup of this study. Once these conditions are
satisfied, the low-energy physics of the underlying micro-
scopic model can be captured quantitatively by the effective
field theory as demonstrated in Ref. 13. Further, in the so-
called cubical regime �to be defined later�, which is relevant
to our study, the cutoff effects appear in the free-energy den-
sity only at next-to-next-to-next-to-leading order �NNNLO�.
The finite cutoff leads to higher-order terms in the effective
Lagrangian due to the breaking of some symmetries and it
introduces the cutoff dependence in the Fourier integrals
�sums�. By employing similar arguments as those presented
in Ref. 18, one can show that higher-order corrections to Eq.
�4� contain four derivatives and the leading cutoff effect in
the Fourier integrals �sums� enters the free-energy density
only at NNNLO. Therefore Eq. �5� is sufficient to derive up
to next-to-next-to-leading order �NNLO� contributions to the
observables considered here. We have further verified that
the inclusion of NNNLO contributions to the relevant ob-
servables considered here lead to statistically consistent re-
sults with those not taking such corrections into account.
Hence the volume and temperature dependences of �s and �u
up to NNLO �to be presented below� are sufficient to de-
scribe our numerical data quantitatively, and the finite cutoff
effects are negligible. Using above Euclidean action �5�, de-
tailed calculations of a variety of physical quantities includ-
ing the NNLO contributions have been carried out in Ref.
18. Here we only quote the results that are relevant to our
study, namely, the finite-temperature and finite-volume ef-
fects of the staggered susceptibility and the uniform suscep-
tibility. The aspect ratio of a spatially quadratic space-time
box with box size L is characterized by l= ��c /L�1/3, with
which one distinguishes cubical space-time volumes with
�c�L from cylindrical ones with �c�L. In the cubical re-
gime, the volume and temperature dependences of the stag-
gered susceptibility is given by

�s =
Ms

2L2�

3
�1 + 2

c

�sLl
�1�l�

+ � c

�sLl
2

��1�l�2 + 3�2�l�� + O� 1

L3� , �6�

where Ms is the staggered magnetization density. Finally the
uniform susceptibility takes the form
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�u =
2�s

3c2�1 +
1

3

c

�sLl
�̃1�l� +

1

3
� c

�sLl
2

���̃2�l� −
1

3
�̃1�l�2 − 6��l�� + O� 1

L3� . �7�

In Eqs. �6� and �7�, the functions �i�l�, �̃i�l�, and ��l�, which
only depend on l, are shape coefficients of the space-time
box defined in Ref. 18.

IV. DETERMINATION OF THE LOW-ENERGY
PARAMETERS AND DISCUSSIONS

In order to determine the low-energy constants for the
anisotropic Heisenberg model given in Eq. �1�, we have per-
formed simulations within the range 0.05�J2 /J1�1.0. The
cubical regime is determined by the condition ��CW1�C�2	
���CW2�C�2	���CWt�C�2	 �which implies �c�L�. Notice
that since J2�J1 in our simulations, one must increase the
lattice size L1 in order to fulfill the condition ��CW1�C�2	
= ��CW2�C�2	 because Eqs. �6� and �7� are obtained for a
�2+1�-dimensional box with equal extent in the two spatial
directions. Therefore, an interpolation of the data points is
required in order to be able to use Eqs. �6� and �7�. Further,
the low-energy parameters are extracted by fitting the Monte
Carlo data to the effective field theory predictions. The qual-
ity of these fits is good as can be seen from Fig. 2 �the
�2/d.o.f. for all the fits is less than 1.25�. Figure 3 shows �s1
and �s2, obtained from the fits, as functions of the ratio of the
antiferromagnetic couplings, J2 /J1. The values of �s1��s2�
obtained here agree quantitatively with those obtained using
the series expansion in Ref. 12 at J2 /J1=0.8 and 0.6 �0.8,
0.6, 0.4, and 0.2�. At J2 /J1=0.4, the value we obtained for
�s1 is only slightly below the corresponding series expansion
result in Ref. 12. However, sizable deviations begin to show
up for stronger anisotropies. Further, we have not observed
the saturation of �s1 to a one-dimensional �1D� limit, namely,
0.25J1 as suggested in Ref. 12, even at J2 /J1 as small as

0.05. In particular, �s1 decreases slightly as one moves from
J2 /J1=0.1 to J2 /J1=0.05 although they still agree within sta-
tistical errors. Of course, one cannot rule out that the
anisotropies in J2 /J1 considered here are still too far away
from the regime where this particular Heisenberg model can
be effectively described by its 1D limit. On the other hand,
the Heisenberg model considered here and its 1D limit are
two completely different systems because spontaneous sym-
metry breaking appears only in two dimension, still �=	 in
both cases. Further, the low-temperature behavior of �u in
the 1D system is known to be completely different from that
of the two-dimensional system.18,19 Although intuitively one
might expect a continuous transition of �s1, one cannot rule
out an unexpected behavior of �s1 as one moves from this
Heisenberg model toward its 1D limit. In particular, since
earlier studies indicate that long-range order already sets in
even for infinitesimally small J2 /J1,6,20,21 it would be inter-

120 150 180 210

β

7

8

9

10

11

12

13

J2/J1 = 0.8

J2/J1 = 0.6

J2/J1 = 0.4

J2/J1 = 0.2

120 150 180 210

β

9.0×10
4

1.0×10
5

1.1×10
5

1.2×10
5

J2/J1 = 0.8

J2/J1 = 0.6

J2/J1 = 0.4

J2/J1 = 0.2

< W
2
t >

χs

160 200 240 280 320

β

3.2

3.4

3.6

3.8

4

J2/J1 = 0.1

J2/J1 = 0.09

J2/J1 = 0.07

J2/J1 = 0.05

160 200 240 280 320

β

1.5×10
4

2.0×10
4

2.5×10
4

3.0×10
4

3.5×10
4

J2/J1 = 0.1

J2/J1 = 0.09

J2/J1 = 0.07

J2/J1 = 0.05

χs

< W
2
t >

(b)(a)

FIG. 2. �Color online� Comparison between our numerical results �data points� and the theoretical predictions �solid lines� that are
obtained by using the low-energy parameters from the fits.

0 0.2 0.4 0.6 0.8 1

J2/J1

0

0.05

0.1

0.15

0.2

0.25

ρ s

FIG. 3. �Color online� The J2 /J1 dependence of the spin stiff-
nesses �s1 and �s2 of the anisotropic Heisenberg model. While the
solid circles �black� and squares �red� are the Monte Carlo results of
�s1 and �s2, respectively, the up and down triangles are the series
expansion results of Ref. 12 for �s1 and �s2, respectively. The solid
lines are added to guide the eye.
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esting to consider even stronger anisotropies J2 /J1 than those
used in this study to see how �s1 approaches its 1D limit. In
addition to �s1 and �s2, we have obtained Ms and c as func-
tions of J2 /J1 as well from the fits �Fig. 4�. The values we
obtained for Ms agree with earlier results in Ref. 6 but have
much smaller errors at strong anisotropies.

Next, we would like to turn to discussing the relevance of
our results to the pinning effect observed empirically in
YBa2Cu3O6.45. In Ref. 12 it is argued that the J2 /J1 depen-
dence of the spin stiffnesses in the spatially anisotropic
Heisenberg model studied in this work would lead to a very
strong pinning energy per Cu site �one order of magnitude
larger compared to the corresponding pinning energy in
La2CuO4�. To be more precise, it is the quantity 
 that is
defined by �s2 /�s1=1+
�J2 /J1−1� in the weak anisotropy
regime that results in the claim made in Ref. 12. Since the

spin stiffnesses calculated here agree with those obtained by
series expansion in the weak anisotropy regime, which in
turn implies that our 
 agrees with that in Ref. 12, we con-
clude that the pinning energy per Cu site is indeed very
strong. Hence the in-plane anisotropy of the spin stiffness of
the Heisenberg model with anisotropic couplings J1 and J2
can indeed provide a possible mechanism for the pinning of
the electronic liquid crystal direction in YBa2Cu3O6.45.

V. CONCLUSIONS

In this note, we have numerically studied the Heisenberg
model with anisotropic couplings J1 and J2 using a loop clus-
ter algorithm. The corresponding low-energy constants are
determined with high precision. Further, the J2 /J1 depen-
dence of �s1 and �s2 is investigated in detail and our results
agree quantitatively with those obtained by series
expansion12 in the weakly anisotropic regime. On the other
hand, we observe discrepancies between our results and se-
ries expansion results in the strongly anisotropic regime.
However, the results of our study still lead to very strong
pinning energy per Cu site in YBa2Cu3O6.45, which agrees
with the claim made by the authors in Ref. 12. Finally we
find that an unexpected behavior of �s1 might be observed as
one approaches much stronger anisotropy regime than those
considered in this study.
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